




# Securing AWS Estates at Scale

Nick Jones, WithSecure



## Agenda



- Common Misconceptions
  - Real World Breach Scenarios
  - What We See
  - Key Security Controls



### Who Am 1?

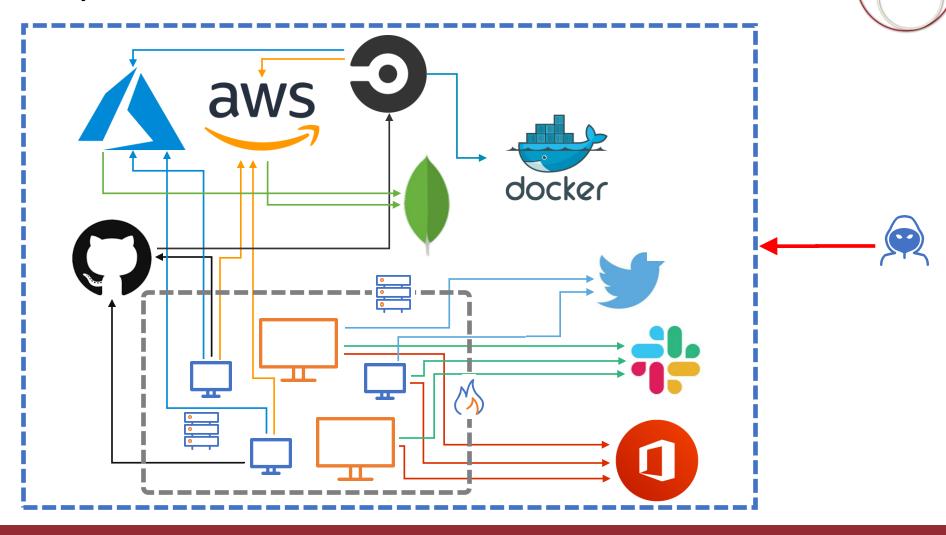
#### Nick Jones – @nojonesuk

- Principal Consultant
- CloudSec Lead @ WithSecure
- AWS Community Builder
- Previously presented at:
  - fwd:cloudsec
  - RSA Conference
  - Blue Team Con
  - +++

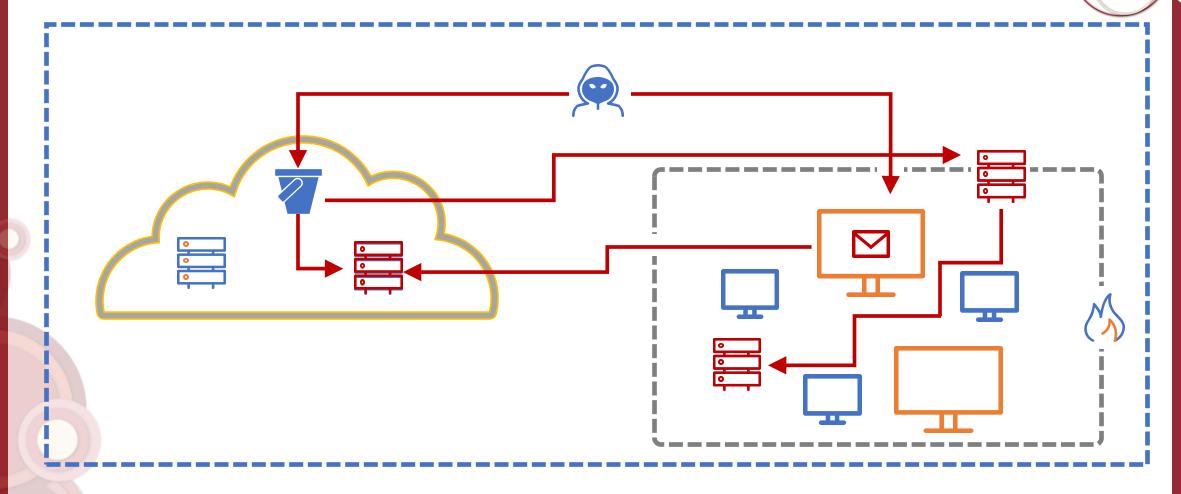






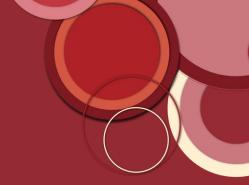

# Common Misconceptions




# The scope of most people's thinking



# The Reality




# Attackers don't just attack the cloud





# Common Myths Dispelled



### Attackers look for path of least resistance

- Most attacks are opportunistic
- The basics helps stop APTs

Most people get screwed by the basics:

- Public S3 buckets
- Forgotten AWS accounts
- Leaked credentials
- Admin rights granted to stupid things

# The following **probably** won't be how you get breached:

- Insufficient/misconfigured encryption at rest
- Not using the Nitro Enclaves/AWS
   ShinyNewSecurityService
- Zero days
- Insider threat @ AWS





# Real World Breach Scenarios



# Inherently Flawed Data

Not all breaches get spotted

Providers hate talking about it

Focus on low hanging fruit



### A Note on Cloud Zero Days

#### Cool but mostly irrelevant

- >120 vulns, 1 exploited ITW, no breaches reported
- https://www.cloudvulndb.org

#### Expect this to change in time

- Israel leading the charge Wiz, LightSpin, Orca
- fwd:cloudsec 2022 keynote from Wiz is a good overview



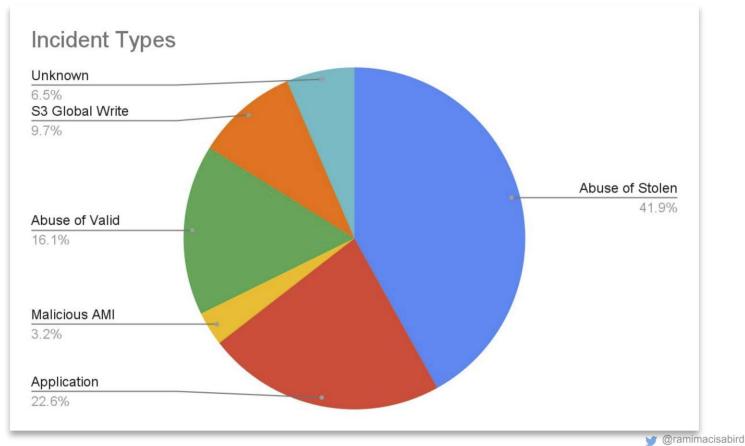
# Open S3 Buckets



#### The perennial problem

- Biggest source of breaches for years
- Trivial to find and exploit

#### Situation is Improving


- AWS offers good options to prevent
- Enable block public buckets everywhere!















# What We See



### Credential Theft



#### Most common cloud breach scenario

Verizon DBIRs say ~70% of cloud breaches

#### Some fun options:

- Credentials in public repositories
- Application Exploitation
- Phishing!



# Attack Path 1: Cloud-Style Shell Popping



#### **Objective**

Root an EC2 instance full of data



# **Compromise Credentials**

Access Keys in GitHub repository



# **Enumerate** Foothold

Who are we, what access might we have?



#### Recon

What services is the target using?



#### **Pop Shells**

Use our access to get shells on EC2 instances





# Cloud Native Phishing

#### **Identity Platforms / SSO**

- Okta, Ping, OneLogin, Auth0...
- Single point of access
- Supply chain risk too

#### Interesting security properties

- MFA, CAPs etc etc
- Often poor session management
- Get the session token, get everything



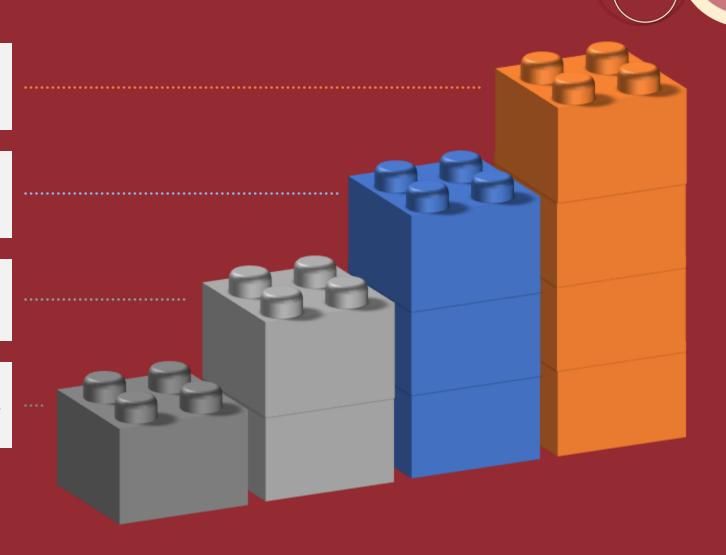


# **Exploiting Development Workflows**

#### **Source Code Management**

Everyone uses GitHub or similar to develop and collaborate on their code

#### CI/CD


Continuous integration and continuous delivery to automate testing and deployment of cloud workloads

#### **Dev Usability > Security**

Enabling devs to move at speed often means system architectures and controls are not well hardened


#### **Automatic IaC Deployments**

IaC changes often automatically deployed after merging – can we bypass approvals process?





### Attack Path 2: DevOooops



#### **Objective**

Admin access over production



Phish a Developer Steal their SSO session

cookie



Access GitHub
Find some
interesting IaC
repositories



Request
Exploit Terraform
Cloud's operating
model

**Malicious Pull** 



Grab the credentials
Terraform Cloud uses
to deploy

**Exfiltrate** 

**Credentials** 







# Key Security Controls

### aws

#### **AWS CLOUD SECURITY COMMUNITY DAY**

# Strong Identity Controls

Multi-Factor Authentication (MFA) everywhere

Principle of not-very-much privilege

Eliminate long-lived credentials (IAM USERS!)

Use IAM Roles where possible

Automate credential management and rotation

01

2

03

**0**4

ΛE







#### Reduce the Need for Human Production Access

Robust observability and CI/CD fast enough to use for emergency fixes

#### **Deploy Production Access Control**

Provide a hardened access mechanism, audit log everything, require approval

#### **Ingest PAC Logs into Security Monitoring**

Monitor PAC audit logs, review against incident tickets

123



# Secrets Management

Often the key point of failure

Where do applications store their secrets?

How are credentials shared and rotated?

How do you know when secrets are leaked?



# Secrets management in AWS



# Use AWS services to do the heavy lifting

- Secrets Manager
- Systems Manager
   Parameter Store
- Hashicorp Vault or similar, if used with IAM authentication

# Common places to find hardcoded secrets

- EC2 USER DATA!
- CloudFormation templates
- App source code
- Environment variables in Lambda configurations
- S3 buckets



### Limit blast radius



#### **Separate Projects**

Use separate AWS accounts within an Organization



#### Segregate at the Network Level

Enforce strong network boundary controls

Avoid VPC peering (especially with third parties)

Don't expose routes between environments



#### **Separate Environments**

Keep dev/QA/prod in separate accounts
Run security tools in their own accounts
Log centrally to a logging account



#### **Minimise Shared Service Access**

Unique CI/CD pipelines per environment

Pull from central rather than push from environments



# AWS CLOUD SECURITY COMMUNITY DAY Decentralised Security skills





Too much tech for any one person

Devolve security skills into other teams

Expect to build a multidisciplinary team



Engineers are the SMEs – work with them!

Security teams should include automation specialists

Ex-cloud/devops engineers ideal here



Expect to invest heavily

Cloud security people are scarce and expensive

Good tools do not come cheap



# AWS CLOUD SECURITY COMMUNITY DAY Conclusions





Security of the cloud extends to include a lot of external factors



Focus on IAM, secrets management, environment segregation and CI/CD



Leverage automation and empower engineers to scale company-wide