
Clear Skies:
Avoiding Security 
Breaches in AWS 

Nick Jones – AWS User Group Malmö, March 2024



Nick Jones – @nojonesuk

• Head of Research @ WithSecure

• Ex-Cloud Security Consulting Lead

• AWS Community Builder

• Focus on:

• Security automation

• Attack detection

• Making security work for 
engineering teams

aws sts get-caller-identity



Real World Breach Scenarios

Other Interesting Attack Vectors

Key Security Controls

Security Testing Done Right

Collaborating with Security Partners

Agenda



• Security’s Idea of Cloud

Security's Idea of the Cloud



Security Modelling



Enterprise Cloud Adoption



Attackers Target Everything



Real World Breach 
Scenarios



https://github.com/ramimac/aws-customer-security-i

ncidents

• Curated dataset of AWS related security incidents
• https://github.com/ramimac/aws-customer-security-incidents

Rami McCarthy’s Breach Dataset

• 45 breaches back to 2014
• 21 incident reports
• Ignores S3 buckets – too many to count!

Highlights

Breach Dataset

https://github.com/ramimac/aws-customer-security-incidents
https://github.com/ramimac/aws-customer-security-incidents


Inherently Flawed Data

Providers hate talking about it

Not all breaches get spotted

Focus on low hanging fruit



https://www.cloudvulndb.or

g

• CloudVulnDB tracking >120 
vulns

• One exploited in the wild, no 
breaches reported

• https://www.cloudvulndb.org

Cool but mostly 
irrelevant

• fwd:cloudsec 2022 keynote 
from Wiz is a good overview

Expect this to change

A Note on Cloud Zero Days

https://www.cloudvulndb.org/
https://www.cloudvulndb.org/


• Biggest source of breaches for 
years now

• Trivial to find and exploit

The perennial problem

• AWS providing good options 
now to prevent

• Enable block public buckets 
everywhere!

Situation is Improving

Open S3 Buckets

Photo from https://www.flickr.com/photos/electronicfrontierfoundation/50617066023



Breach Causes

Public credentials

Unknown

AppSec breach

Leaked/stolen credentials

S3 global write

Exposed services

Insider threat

Third-party breach
Malicious AMIOther



44%*
Breaches involving IAM users

* At least, given ambiguity of dataset





Attackers look for 
the easiest path

Most attacks are 
opportunistic

Your org is likely not a 
priority target

The basics helps stop 
APTs too

Most get screwed 
by the basics:

Public S3 buckets

Forgotten accounts

Leaked credentials

Bad leaver handling

IAM Users

You probably won’t
get breached by:

Encryption at rest

Not using the Nitro 
Enclaves etc

Zero days

AWS Insider threat

Summary



Other Interesting Attack 
Vectors



• Network level access to manage
• Overhead of separate authentication systems
• Harder to log & audit

Native SSH/RDP aren’t great

• (Usually) easier identity management, fewer networking concerns
• Caveat: It joins two previously separate security domains
• Your IAM configuration needs to be solid!

SSM & Instance Connect are mostly better

Cloud Native Management Services



Cloud-Style Shell Popping!

Objective
Root on an EC2 

instance full of 
sensitive data

Compromise 
Credentials
Find IAM User 
keys in a public 
Github Repository

Enumerate 
Foothold

Who are we, what 
access might we 

have?

Recon
What services is 
the client using?

Pop Shells
Use SSM to get 
shell access on 
EC2 instances



• Okta, Ping, OneLogin, Auth0…
• Single point of access
• Supply chain risk too

Identity Platforms / SSO

• MFA, CAPs etc etc
• Often poor session management
• Get the session token, get access to everything

Interesting security properties

Cloud Native Phishing



Exploiting Development Workflows

Source Code Management
Everyone uses GitHub or similar to develop and 
collaborate on their code

CI/CD
Continuous integration and continuous delivery to 
automate testing and deployment of cloud workloads

Automatic IaC Deployments
IaC changes often automatically deployed after 
merging – can we bypass approvals process?

Dev Usability > Security
Enabling devs to move at speed often means system 
architectures and controls are not well hardened 



Attack Path 2: DevOooops

Objective
Admin access 

over production 
AWS account

Phish a 
Developer
Steal their SSO 
session cookie

Access 
GitHub

Find some 
interesting IaC 

repositories

Malicious 
Pull Request
Exploit Terraform 
Cloud’s operating 

model

Exfiltrate 
Credentials

Grab the 
credentials 

Terraform Cloud 
uses to deploy



Terraform Cloud Exploitation

Terraform Cloud

external resource type 
references a bash script, 
which is executed by 
terraform plan

Code Exec

Opening a GitHub Pull 
Request triggers 
Terraform Cloud actions

Attacker

Pull Request

Terraform Cloud runs 
terraform init + terraform 
plan, executing all 
Terraform code in the 
process. Posts plan 
results back to GitHub pull 
requests as a comment

Terraform Cloud

Terraform Plan

Bash script can steal and 
exfiltrate credentials to 
attacker. Common to find 
credentials in:
• Environment vars
• Metadata service

Attacker

Steal Creds



Pipeline Hardening

01 Code Scan IaC

Analyse IaC for malicious 
code on pull request before 

triggering TFC

02 Four Eyes Checks

Enforce approval on all 
merges into master

03 Pipeline Assessments

Treat SCM and CI/CD as 
crown jewels, threat model 

and pentest accordingly

04 Reduce Attack Surface

Standardise tooling, disable 
unneeded components



Key Security Controls



Strong Identity Controls

01
Enforce Multi-Factor Authentication (MFA) everywhere

Apply principle of not-very-much privilege
02

Eliminate long-lived credentials (IAM USERS!)
03

Use provider-backed authentication where possible
04

Automate credential management and rotation
05



Limit Blast Radius

SEGREGATE AT THE NETWORK LEVEL
Enforce strong network boundary controls, avoid 

VPC peering (especially with third parties)

SEPARATE ENVIRONMENTS
Keep development, QA/test and production 
environments separated within your cloud’s 
management structure, such as AWS 
Organisations or Google Organisations

MINIMISE SHARED SERVICE ACCESS
Deploy unique CI/CD pipelines per environment, have 
monitoring tools reach into the account rather than the 
accounts writing data out elsewhere

SEPARATE PROJECTS
Use separate accounts/subscriptions/ 

projects for different applications



Use Production Access Control
Provide a means to gain production access when necessary that provides a robust 
security model, an audit logging capability, and an approval workflow that ties into 
existing incident management processes and systems

Reduce the Need for Human Production Access
Design systems to reduce or eliminate the need for humans to access production systems 
and data, by providing robust production logging capability and CI/CD that allows 
emergency fixes to be deployed without human intervention

Feed PAC logs into your SIEM
Audit logs from PAC should be monitored by security team, and activity 
tracked against the appropriate incident ticket

Production Access Control

321



Use Secrets Manager / SSM Parameter Store!

Secrets Management

How do you know when secrets are leaked?

Where do applications store their secrets?

Often the key point of failure

How are credentials shared and rotated?



Security Testing Done 
Right



Cloud configuration review / “pentest”

Configuration 
mistakes

IAM permission 
review

Network layout/SG 
hardening etc

App Assessment/Pentest

OWASP Top 10 Business logic 
flaws API flaws

“Penetration Testing” in AWS



Driven by audits, not threats

Cloud engineering moves too fast

Low return on investment

Ignores critical supporting systems

“Penetration Testing” Mostly Sucks



What To Do Instead?

Automate
Leverage automation to 
drive as much security as 

possible

Assess
Use humans to find the 

rest, and simulate 
attackers



IaC Scanning
Scan Infrastructure as Code in pipelines

Checkov
TFLint

02

Configuration
Assess resources for configuration issues

Prowler
ScoutSuite

01

Secrets Scanning
Scan repositories for keys, certificates etc

TruffleHog
detect-secrets

04

IAM
Identify IAM misconfigurations

Cloudsplaining
Pmapper

IAMSpy

03

Security Automation



SCM & CI/CDSupport access, 
bastion hosts

SSO & PAMIAM & SCPs 
Organization-wide

Human-led reviews



>>>>>>>>>

>
>

>
>

>
>

>
>

>

Objective-Driven Assessments

• Steal key data/IP
• Move money
• Deploy malicious code to prod

Business targets

• Leaked access keys
• Compromised developer
• Other insider threat
• Application compromise

Realistic starting points



Don’t Buy a Red Team

• Adversarial simulation
• All about stealth, validating 

detection and response
• Depth, not breadth

You likely don’t need it

• Confirm/harden attack surface
• Build your attack detection & 

response capabilities
• Test everything collaboratively
• … then maybe a red team!

Red Team = final step



Collaborating with 
Security Partners



• Fit their testing and reporting into your workflows
• Push for deep advice and long-term solutions

Make it work for you

• Do they get AWS/Cloud/DevOps?
• Can they show you novel R&D?
• Use engineers to vet providers’ technical knowledge

Find a good partner

If You’re Buying Security Testing…



• Give us read access to the AWS accounts
• If you’re using IaC, show us that too

Access

• Help us understand what you’ve built
• Show us problems, help us design solutions
• Stay engaged and communicate with testers

Work with us

Help Us Help You!



Security of the cloud extends to include a lot of external factors

Focus on IAM (especially users!), secrets management and CI/CD

Leverage automation and be smart about how you use humans

Conclusions



If you want to go fast, go alone. 
If you want to go far, go together.

-- African Proverb*

* https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1

https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1


Thanks for listening!

Twitter: @nojonesuk

Blog: www.nojones.net

Community Builders Slack: Nick Jones




	Intro - 5 mins
	Slide 1: Clear Skies: Avoiding Security Breaches in AWS 
	Slide 2: aws sts get-caller-identity
	Slide 3: Agenda
	Slide 4: Security's Idea of the Cloud
	Slide 5: Security Modelling
	Slide 6: Enterprise Cloud Adoption
	Slide 7: Attackers Target Everything

	Real World Breach Scenarios
	Slide 8: Real World Breach Scenarios
	Slide 9: Breach Dataset
	Slide 10: Inherently Flawed Data
	Slide 11: A Note on Cloud Zero Days
	Slide 12: Open S3 Buckets
	Slide 13: Breach Causes
	Slide 14
	Slide 15
	Slide 16: Summary

	Other Interesting Attack Vectors
	Slide 17: Other Interesting Attack Vectors
	Slide 18: Cloud Native Management Services
	Slide 19: Cloud-Style Shell Popping!
	Slide 20: Cloud Native Phishing
	Slide 21: Exploiting Development Workflows
	Slide 22: Attack Path 2: DevOooops
	Slide 23: Terraform Cloud Exploitation
	Slide 24: Pipeline Hardening

	Key Security Controls
	Slide 25: Key Security Controls
	Slide 26: Strong Identity Controls
	Slide 27: Limit Blast Radius
	Slide 28: Production Access Control
	Slide 29: Secrets Management 

	Security Testing Done Right
	Slide 30: Security Testing Done Right
	Slide 31: “Penetration Testing” in AWS
	Slide 32: “Penetration Testing” Mostly Sucks
	Slide 33: What To Do Instead?
	Slide 34: Security Automation
	Slide 35: Human-led reviews
	Slide 36: Objective-Driven Assessments
	Slide 37: Don’t Buy a Red Team

	Collaborating with Security Partners
	Slide 38: Collaborating with Security Partners
	Slide 39: If You’re Buying Security Testing…
	Slide 40: Help Us Help You!
	Slide 41: Conclusions
	Slide 42
	Slide 43: Thanks for listening!
	Slide 44


